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Abstract

The vibration response of a thin circular cylindrical panel to harmonic excitation in the neighborhood of
the first three natural frequencies has been measured for different force levels. The experimental boundary
conditions approximate (i) on the curved edges: zero radial, axial and circumferential displacements; all
rotations were allowed; (ii) on the straight edges: zero radial and axial displacements; all rotations and
circumferential displacements were allowed. The different levels of excitation permitted reconstruction of
the relatively strong, softening type non-linearity of the panel.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Amabili and Pa.ıdoussis [1] recently compiled an extensive review of work on geometrically non-
linearity (large-amplitude) vibrations of shells and curved panels. It was found that not many
experimental investigations on large-amplitude vibrations of empty and fluid-filled circular
cylindrical shells are available. In particular, it seems that experiments on non-linearity vibrations
of circular cylindrical panels were reported only in the work of Nagai et al. [2], but the trend of
non-linearity, which is obtained by performing tests with different levels of the excitation force,
was not given. Also other experiments on non-linearity dynamics of curved panels are very scarce.
Palazotto et al. [3] tested composite circular cylindrical panels subjected to impact, and Morino
et al. [4] reported data of experiments on explosively loaded, clamped, circular cylindrical panels.
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Many theoretical and numerical studies are available on geometrically non-linear vibration of
circular cylindrical panels with different boundary conditions; see e.g., the review by Amabili and
Pa.ıdoussis [1] and the papers of Leissa and Kadi [5], Hui [6], Fu and Chia [7] and Raouf [8].
The experimental response of panels as a function of the frequency of harmonic excitation and

vibration amplitude, which was not available before the present study, is fundamental for
validation of non-linearity shell theories and solution algorithms. For this reason, experiments on
large-amplitude vibrations of a circular cylindrical panel with rectangular boundary were
performed in the present study. The experimental boundary conditions approximate (i) on the
curved edges: zero radial, axial and circumferential displacements; all rotations were allowed; (ii)
on the straight edges: zero radial and axial displacements; all rotations and circumferential
displacement were allowed.

2. Experimental set-up

Tests have been conducted on a circular cylindrical panel made of stainless steel. The
dimensions and material properties of the panel are: length between supports L ¼ 522mm, radius
of curvature R ¼ 150mm, thickness h ¼ 0:295mm, angular width between supports 711
(curvilinear width length b ¼ 185mm), Young’s modulus E ¼ 1:95� 1011 Pa, mass density
r ¼ 7850 kg/m3 and the Poisson ratio n ¼ 0:3: The panel was inserted into a heavy rectangular
frame made of several thick parts, see Fig. 1, having grooves designed to hold the panel. The
frame was built with a mobile side, a screw and a load cell to give the desired axial load to the
panel. Since the depth of the grooves was 0.5mm, silicon was placed into the grooves to hold
better the edges of the panel and then avoid radial displacements at the edges. The axial
displacements at the straight edges and the circumferential displacements at the curved edges were
prevented by friction between the panel and the grooves and by silicon. In fact, axially the panel
had a small compression (the compressive load has been measured to be about 100N and has
absolutely negligible effects on natural frequencies and non-linearity response; in fact, the critical

Fig. 1. Photograph of the experimental set-up.
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load computed by using the approximate formula [9].

Fcr ¼
Ebh

6ð1� n2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1� n2Þðh=RÞ2 þ ðph=bÞ4

q
þ ðph=bÞ2

� �
;

is 13960N, which is very far from 100N), which prevents axial displacement at the curved edges
and increases the friction between grooves and panel’s curved edges. The circumferential
displacements on straight edges were allowed because the constraint given by silicon on this
displacement was small.
The panel has been subjected to (i) burst-random excitation to identify the natural frequencies

and perform a modal analysis by measuring the panel response on a grid of points, (ii) harmonic
excitation, increasing or decreasing by very small steps the excitation frequency in the spectral
neighbourhood of the lowest natural frequencies to characterize non-linearity responses in the
presence of large-amplitude vibrations. The excitation has been provided by an electrodynamical
exciter (shaker), model LDS V406 with power amplifier LDS PA100E, connected to the shell by a
thin stinger glued in a position close to the centre of the panel; in particular 4mm away axially and
2mm away circumferentially. A piezoelectric force transducer, model B&K 8200, of mass 21 g,
placed on the shaker and connected to the panel with a stinger, measured the force transmitted.
The shell response has been measured by using a sub-miniature accelerometer, model Endevco 22,
of mass 0.14 g. For all non-linearity tests, the accelerometer have been glued at the middle of
the panel length at different angular positions corresponding to the antinode of the
mode excited. The specific angular locations of the accelerometers are given in Table 1
for the different modes investigated. The time responses have been measured by using the Difa
Scadas II front-end connected to a HP c3000 workstation and the software CADA-X of LMS for
signal processing and data analysis; the same front-end has been used to generate the excitation
signal. The CADA-X closed-loop control has been used to keep constant the value of the
excitation force for any excitation frequency, during the measurement of the non-linearity
response.

3. Natural frequencies and modes

The frequency response functions (FRFs) have been measured between 91 response points and
one single excitation point. Both excitation force and measured responses have been in the radial
direction. The response points have been located on a grid of seven equidistant arcs and 13

Table 1

Location Ry of the accelerometer in large-amplitude vibration tests; origin y ¼ 0 at the

centre of the panel; excitation at R y ¼ 2mm

Mode Location

n ¼ 3; m ¼ 1 0mm

n ¼ 2; m ¼ 1 �22mm

n ¼ 4; m ¼ 1 �21mm
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positions on each arc. The experimental modal analysis has been performed by using the software
CADA-X 3.5b of LMS and burst-random excitation with the following parameters: burst length
65%; frequency resolution 0.23Hz; 10 averages; Hanning windows. The level of excitation was
kept low in order to give small amplitude vibrations (approximating a linear system). The FRFs
have been estimated by using the HV technique. The modal parameters have been estimated by
using the frequency domain, direct parameter identification technique. The analysis of the
experimental data has been validated by using the modal assurance criterion and the modal phase
collinearity.
The measured FRF in correspondence of the excitation (driven point) is shown in Fig. 2

with identification of natural modes. In the same figure, the FRF measured by using
hammer excitation is also given in order to show the small added mass of the connection of
the thin panel to the load cell and the shaker. The measured natural frequencies are presented and
compared in Fig. 3 to numerical calculations with the FEM code ADINA 7.4; up to 1800 shell
elements with 8 nodes have been used in the model (mesh refinement has been used to check
convergence). Due to small geometric imperfections and sensors some modes are split in a couple
of very similar modes with very close frequency. Each couple of modes is identified in Figs. 2 and
3 by the same indexes n and m; which are the number of circumferential and axial half-waves,
respectively. In Fig. 4 four experimental and computed mode shapes are compared. Damping
coefficients are given in the figure caption. The fundamental mode is (n ¼ 3; m ¼ 1). Theoretical
and experimental results are in good agreement both in natural frequencies and mode shapes. In
Table 2 a comparison of natural frequencies is given. This assures that the experimental boundary
conditions approximate the constraints used in the FEM model, which are those summarized in
Table 3.

Fig. 2. Measured FRF of the driven point with identification of natural modes. , excitation provided by shaker; ––,

hammer excitation.
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Fig. 3. Theoretical and experimental natural frequencies of the panel. Theoretical results: —, m ¼ 1; – –, m ¼ 2; – � –,
m ¼ 3: Experimental results: &, +, m ¼ 1; W, � , m ¼ 2; J, m ¼ 3:

Fig. 4. Three-dimensional representation of measured and computed natural modes; all points at the intersection of

two lines have been measured. (a) Measured fundamental mode (n ¼ 3; m ¼ 1), frequency 240.9Hz, damping ratio

0.65%; (b) measured second mode (n ¼ 2; m ¼ 1), frequency 313.2Hz, damping ratio 0.39%; (c) measured third mode

(n ¼ 4; m ¼ 1), frequency 344.9Hz, damping ratio 0.32%; (d) measured mode (n ¼ 4; m ¼ 2), frequency 405.7Hz,

damping ratio 0.85%; (e) computed fundamental mode (n ¼ 3; m ¼ 1), frequency 241.1Hz; (f) computed second mode

(n ¼ 2; m ¼ 1), frequency 328.6Hz; (g) computed third mode (n ¼ 4; m ¼ 1), frequency 340.3Hz; (h) computed mode

(n ¼ 4; m ¼ 2), frequency 412.9Hz.
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4. Non-linearity results

Fig. 5 shows the measured accelerations around the fundamental frequency (n ¼ 3; m ¼ 1;
natural frequency 240.9Hz) versus the excitation frequency for five different force levels: 0.01, 0.1,
0.25, 0.5, and 0.7 N. The level of 0.01N gives a very good evaluation of the natural (linear)
frequency. The closed-loop control used in the experiments keeps the magnitude of the harmonic
excitation force constant after filtering the signal from the load cell in order to use only the
harmonic component with the given excitation frequency. The measured accelerations reported in
Fig. 5 have been filtered in order to eliminate any frequency except the excitation frequency.
Experiments have been performed with both increasing and decreasing the excitation frequency;
the frequency step used in this case is 0.025Hz, 16 periods have been measured with 64 points per
period and 50 periods have been waited before data acquisition every time that the frequency is
changed. The hysteresis between the two curves (up=increasing frequency; down=decreasing
frequency) is clearly visible. Sudden increments (jumps) of the vibration amplitude are observed
when increasing and decreasing the excitation frequency; these are characteristic of a softening
type non-linearity. The measured accelerations have been converted to displacements, dividing by
the excitation circular frequency squared, and have been plotted in Fig. 6. The graph has been
made non-dimensional by dividing the displacements by the panel thickness h and the excitation
frequencies by dividing by the natural circular frequency om;n=240.92� 2p. When the vibration

Table 2

Natural frequencies obtained by experiments, compared to FEM results

m n Experimental frequency (Hz) FEM frequency (Hz)

1 2 313.2 328.6

1 2 317.1 328.6

1 3 240.9 241.1

1 4 344.9 340.3

1 5 482.6 516.7

1 6 747.7 741.0

2 3 423.4 441.6

2 3 380.4 441.6

2 4 405.7 412.9

2 5 577.7 545.4

2 5 543.7 545.4

3 4 551.0 564.9

Table 3

Boundary conditions used in FEM model (approximation of experimental constraints)

Axial displ. Radial displ. Circumferential displ. Rotations

Straight edges Constrained Constrained Free Free

Curved edges Constrained Constrained Constrained Free
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amplitude is equal to 0.9 times the shell thickness, the peak of the response appears for a
frequency lower of about 5% with respect to the linear one (i.e., the one measured with force
0.01N). The phase relationships between the acceleration (measured positive outwards) and the
force input (measured positive inwards) are given in Fig. 7.
The experimental force input and acceleration for the fundamental mode (n ¼ 3; m ¼ 1) of the

panel are shown in Fig. 8 versus time for excitation of magnitude 0.5N and frequency 225.1Hz
measured by increasing the excitation frequency. In these conditions, the shell response is the one
obtained before the big jump (sudden decrement of the response amplitude) on the left of peak in
Fig. 6 for a force of 0.5N. The input force simulates accurately a sinusoidal function of time and
the measured accelerations are relatively small. The experimental force input and acceleration for
the same level of excitation but a frequency of 233.15Hz (measured by increasing the excitation
frequency) are shown in Fig. 9. In these conditions, the shell response is the one at the peak in
Fig. 6 for force of 0.5N. The input force is no more a pure sinusoidal function of time and the
measured acceleration is quite large and distorted. For acceleration very close to the peak, the
corresponding input force has been found to be similarly distorted for forces of 0.5N or larger.
This distortion causes some differences (where these are not due to softening type non-linearity)
between the two curves measured increasing and decreasing the excitation frequency around the
peak of the response.
Measured responses of the second (n ¼ 2; m ¼ 1) and third (n ¼ 4; m ¼ 1) mode of the panel

for different force levels are given in Figs. 10 and 11, respectively. Remarkable softening type

Fig. 5. Experimentally measured acceleration (peak) versus excitation frequency with different harmonic forces;

fundamental mode (n ¼ 3; m ¼ 1). —�—, increasing the excitation frequency; – –+– –, decreasing the excitation

frequency.
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non-linearity is clearly visible also for these modes. In Fig. 10 a second rounded peak can be
observed for the response to excitation of 3N; this is exactly the same mode (n ¼ 2; m ¼ 1) with a
slightly different frequency due to geometric imperfections, connection to the shaker and
accelerometer.

Fig. 6. Non-dimensional oscillatory displacement (peak) versus non-dimensional excitation frequency with different

harmonic forces; fundamental mode (n ¼ 3; m ¼ 1). —�—, increasing the excitation frequency; – –+– –, decreasing

the excitation frequency.

Fig. 7. Experimentally measured response phase–frequency curves for the fundamental mode; force 0.7N. —�—,

increasing the excitation frequency; – –+– –, decreasing the excitation frequency.
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Fig. 9. Measured force and acceleration (peak) versus time for the fundamental mode (n ¼ 3; m ¼ 1); force 0.5N,

frequency 233.15Hz increasing frequency. ——, force; – –, acceleration.

Fig. 8. Measured force and acceleration (peak) versus time for the fundamental mode (n ¼ 3; m ¼ 1); force 0.5N,

frequency 225.1Hz increasing frequency. ——, force; – –, acceleration.
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Fig. 10. Experimentally measured acceleration versus excitation frequency with different harmonic forces; second mode

(n ¼ 2; m ¼ 1). —�—, increasing the excitation frequency; – –+– –, decreasing the excitation frequency.

Fig. 11. Experimentally measured acceleration versus excitation frequency with different harmonic forces; third mode

(n ¼ 4; m ¼ 1). —�—, increasing the excitation frequency; – –+– –, decreasing the excitation frequency.
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5. Conclusions

Experiments show that the curved panel tested presents a relatively strong geometric non-
linearity of softening type. In particular, for the fundamental mode the resonance is reached for
frequency 5% lower than the natural (linear) frequency when the vibration amplitude is equal to
0.9 times the shell thickness. This is particularly interesting when these results are compared to the
non-linearity of the fundamental mode of complete (closed around the circumference), simply
supported, circular cylindrical shells of similar length and radius, which present much weaker
nonlinearity [1].
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